l1 Trend Filtering

نویسندگان

  • Seung-Jean Kim
  • Kwangmoo Koh
  • Stephen Boyd
  • Dimitry Gorinevsky
چکیده

The problem of estimating underlying trends in time series data arises in a variety of disciplines. In this paper we propose a variation on Hodrick-Prescott (H-P) filtering, a widely used method for trend estimation. The proposed l1 trend filtering method substitutes a sum of absolute values (i.e., an l1-norm) for the sum of squares used in H-P filtering to penalize variations in the estimated trend. The l1 trend filtering method produces trend estimates that are piecewise linear, and therefore is well suited to analyzing time series with an underlying piecewise linear trend. The kinks, knots, or changes in slope, of the estimated trend can be interpreted as abrupt changes or events in the underlying dynamics of the time series. Using specialized interior-point methods, l1 trend filtering can be carried out with not much more effort than H-P filtering; in particular, the number of arithmetic operations required grows linearly with the number of data points. We describe the method and some of its basic properties, and give some illustrative examples. We show how the method is related to l1 regularization based methods in sparse signal recovery and feature selection, and list some extensions of the basic method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Trending and Filtering Using Monotonic Walk Models

This paper discusses algorithms for filtering and recovering underlying trends from noisy data. The key assumption in this paper is that the trends are monotonic, e.g., describe system deterioration that accumulates irreversibly. A maximum a posteriori probability (MAP) estimate of the trend can be obtained using an empirical signal model (MAP prior). The overall problem statement is related to...

متن کامل

On l1 mean and variance filtering

This paper addresses the problem of segmenting a time-series with respect to changes in the mean value or in the variance. The first case is when the time data is modeled as a sequence of independent and normal distributed random variables with unknown, possibly changing, mean value but fixed variance. The main assumption is that the mean value is piecewise constant in time, and the task is to ...

متن کامل

Subband Adaptive Filter Exploiting Sparsity of System

This paper presents a normalized subband adaptive filtering (NSAF) algorithm to cope with the sparsity condition of an underlying system in the context of compressive sensing. By regularizing a weighted l1-norm of the filter taps estimate onto the cost function of the NSAF and utilizing a subgradient analysis, the update recursion of the l1-norm constraint NSAF is derived. Considering two disti...

متن کامل

A trend filtering approach for change point detection in MOX gas sensors

Detecting changes in the response of metal oxide (MOX) gas sensors deployed in an open sampling system is a hard problem. It is relevant for applications such as gas leak detection in coal mines [1], [2] or large scale pollution monitoring [3],[4] where it is unpractical to continuously store or transfer sensor readings and reliable calibration is hard to achieve. Under these circumstances it i...

متن کامل

Robust mesh denoising via vertex pre-filtering and L1-median normal filtering

We propose a robust and effective mesh denoising approach consisting of three steps: vertex pre-filtering, L1-median normal filtering, and vertex updating. Given an input noisy mesh model, our method generates a high quality model that preserves geometric features. Our approach is more robust than state of the art approaches when denoising models with different levels of noise and can handle mo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007